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Abstract
We extend a Gaussian model for the internal electrical potential of a two-
dimensional Coulomb gas by a non-Gaussian measure term, which singles
out the physically relevant configurations of the potential. The resulting
Hamiltonian, expressed as a functional of the internal potential, has a surprising
large-scale limit: the additional term simply counts the number of maxima and
minima of the potential. The model allows for a transparent derivation of
the divergence of the correlation length upon lowering the temperature to the
Kosterlitz–Thouless transition point.

PACS numbers: 6460, 6130J, 6470

1. Introduction

The two-dimensional Coulomb gas has found an abundant number of applications, ranging
from the melting of two-dimensional crystals [1, 2], vortices in superfluid films [3] and thin
superconductors [4] and arrays of Josephson contacts [5] to topological defects of thin liquid-
crystal films [6]. Common to these systems is the existence of two types of topological,
point-like defect (positive and negative ‘charges’), which interact according to the two-
dimensional Coulomb law, i.e. the potential energy grows logarithmically with distance. At low
temperatures positive and negative defects are bound together and form neutral dipoles, which
start to unbind at a certain critical temperature—the Kosterlitz–Thouless transition point [7,8].
In fact, an energy of the order of �E ∼ log A (A is the system size) is needed to break up two
bound charges. On the other hand, the unbinding process implies a gain of entropy, which is
also of the order of log A. Above the critical temperature entropy wins and a plasma-like gas
of free charges is formed. The high-temperature phase is characterized by the existence of
a screening length: the Coulomb interaction is shielded beyond the so-called Debye–Hückel
length due to the formation of a cloud of opposite charges around a (test-) charge. This phase
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is well described by a Gaussian model for the continuous charge density ρ (Debye–Hückel
model) with the Hamiltonian

H/T = KA

2

∫
d2x d2x ′ ρ(x) G(x − x′) ρ(x′) +

∫
d2x

ρ2

2z
(1.1)

where Gr ∼ −(2π)−1 log(r/�) + const (� is a microscopic lengthscale) is the Green function
of the two-dimensional Laplacian (−∇2G(r) = δ(r)), KA is the charge–charge coupling
strength and the mass z measures the distance to the transition temperature z ∼ T − Tc and
controls the density of charge pairs. The charge–charge correlation function reads (in Fourier
space)

C(p) ∝
(

1 − KAz

p2 + KAz

)
(1.2)

where the screening length (Debye–Hückel length �DH) is given by �DH = (KAz)−1/2. The
Gaussian functional (1.1) applies to temperatures well above the transition temperature—it
does not predict the essential singularity of the correlation length ξ ∼ exp(b/

√
T − Tc) closer

to the transition point.
The aim of this paper is to propose a novel model Hamiltonian for the high-temperature

phase of the two-dimensional Coulomb gas, describing the fluctuations of the internal electrical
potential. In contrast to the sine–Gordon theory, which has an unphysical auxiliary variable as
its fundamental field, our model is based on a physical quantity (the potential) and, therefore,
leads to a more intuitive understanding of the Kosterlitz–Thouless transition.

The resulting continuum model displays the correct divergence of the correlation length
in the vicinity of the critical point, as will be demonstrated within a variational calculation and,
in addition, within renormalized perturbation theory.

2. The model

We start with the (Gaussian) Debye–Hückel model (1.1) and introduce the internal electrical
potential φ via −∇2φ = ρ. The partition function for the model reads

Z =
∫

D[φ] W[φ] exp

(
−KA

2

∫
d2x (∇φ)2 − µ

2

∫
d2x (∇2φ)2

)
(2.1)

with the (trivial) measure W[φ] ≡ 1. Can we do better and find an appropriate measure
W[φ] for the internal potential, which singles out the relevant configurations and, therefore,
go beyond the Gaussian case? Here is a suitable candidate:

W[φ] = exp

(
−u

4

∫
d2x (∇2φ)2 δλ(∇φ)

)
≡ exp (−H1/T ) (2.2)

with the Gaussian (‘delta function’) δλ(E) = (2πλ)−1 exp(−E2/(2λ)).
First, we investigate the mathematics of this ansatz. For λ → ∞ the measure W[φ] is

Gaussian and simply renormalizes the mass z. For small λ, on the other hand, the function
δλ(∇φ) picks up zeros of ∇φ, i.e. local maxima, minima and saddle points of the potential φ.
We expand φ in the vicinity of an extremal point x0 (where ∇φ(x0) = 0) up to second order
in ξ = x − x0:

φ(x0 + ξ) ≈ φ(x0) + (1/2)αij ξiξj i, j = 1, 2

(summation over double indices is assumed) and find for the contribution of this extremum
(for λ → 0)

H1/T = u

4

∫
d2x (∇2φ)2 δλ(∇φ)
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≈ u

4

∫
d2ξ (αii)

2 1

2πλ
exp

(
−αijαikξj ξk

2λ

)

= u
(η1 + η2

2

)2 /
|η1η2| (2.3)

where η1,2 are the eigenvalues of the second derivative ∂i∂jφ = αij right at the extremal
point. Maxima/minima yield a contribution H1/T � u, since η1 · η2 > 0. For a symmetric
maximum/minimum η1 = η2 and consequently H1/T = u; on the other hand, a ‘symmetric’
saddle point yields zero, since η1 = −η2. Therefore, the nonlinear term acts as a kind of
chemical potential for the number of extremal points [9–11]1:

H1/T � u × #(local maxima and minima of φ). (2.4)

To summarize this point, the nontrivial measure W[φ] favours potentials with only a few
maxima and minima, which are in fact the physically relevant ones. Consider a typical charge
configuration of a Coulomb gas system right above the transition temperature. Apart from
a large number of dipoles, which give rise to an effective dielectric constant, we find few
free charges qi = ±1 at positions ri . The corresponding potential φ(r) = ∑

i qiG(r − ri )

has (few) maxima and minima at the locations of the charges ri (if we use a short-distance
regularized Green function G, otherwise the potential φ would diverge at the locations ri) and
symmetric saddle points elsewhere, since �φ(r) = 0 for r �= ri .

We rescale the potential
√

µφ → φ and the constant µλ → λ, define the mass τ ≡ KA/µ

and obtain as the final model

H/T =
∫

d2x

(
1

2
(∇2φ)2 +

τ

2
(∇φ)2 +

u

4
(∇2φ)2 δλ(∇φ)

)
. (2.5)

The coupling constants u, λ are dimensionless, whereas τ is a relevant coupling with dimension
τ ∼ length−2—it is a measure for the deviation from the critical point τ ∼ T − Tc.

3. Variational approach

We calculate an upper bound of the free energy F of our model (2.5) with the help of

F = − log
∫

D[φ] exp(−H/T ) � Fv + 〈H − Hv〉v (3.1)

and the ansatz

Hv/T = A

2

∫
d2x

(
(∇2φ)2 + ω(∇φ)2

)
(3.2)

where A and ω are variational parameters, Fv is the free energy with respect to Hv and 〈· · ·〉v

denotes the corresponding average. In fact, the optimal Gaussian fit has the form given above—
a more general ansatz is not necessary and would reduce to an expression such as (3.2). To
evaluate 〈(∇2φ(r))2 δλ(∇φ(r))〉v we note that ∇φ(r) and ∇2φ(r) are uncorrelated Gaussian
variables and, therefore (we drop the argument r from now on),

〈(∇2φ)2 δλ(∇φ)〉v = 〈(∇2φ)2〉v

∫
d2E

exp
(−E2/〈(∇φ)2〉v − E2/(2λ)

)
π〈(∇φ)2〉v 2πλ

= 〈(∇2φ)2〉v

π〈(∇φ)2〉v + 2πλ
. (3.3)

1 The number of saddles is equal to the number of maxima and minima for a flat geometry.
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The expectation value 〈(∇φ)2〉v diverges for ω → 0 and, therefore, the width λ of the Gaussian
δλ becomes irrelevant, justifiying the introduction of a sharp delta-function (λ → 0) in the
model (2.5). Up to the constant 〈Hv〉v , we obtain the upper bound of the free energy per area f

8πf �
∫ -2

0
ds log(A(s + ω)) +

∫ -2

0
ds

s2

As(s + ω)
+ τ

∫ -2

0
ds

s

As(s + ω)

+2u

∫ -2

0
ds

s2

As(s + ω)

(∫ -2

0
ds

s

As(s + ω)

)−1

(3.4)

where the first term represents Fv , the second and third terms are the expectation value of the
Gaussian part of (2.5) and the last term represents 〈H1〉v . - is the upper cutoff momentum and
s = p2, π ds = πp dp = d2p using polar coordinates. Next, we set - = 1 (equivalently we
can introduce dimensionless couplings), eliminate A (variation of the bound f with respect
to A yields A = 1 + (τ − ω) log(1 + 1/ω)) and arrive at

8πf � log (1 + (τ − ω) log(1 + 1/ω)) + log(1 + ω) + ω log(1 + 1/ω)

+2u

(
1

log(1 + 1/ω)
− ω

)
. (3.5)

It can be tested afterwards that ω and (τ −ω) log(1 + 1/ω) become small enough in the critical
region to approximate log(1 + (· · ·)) ≈ (· · ·) in the first two terms of (3.5). The expression is
especially simple for u = 1/2

8πf � τ log(1 + 1/ω) +
1

log(1 + 1/ω)
(3.6)

yielding the minimum log (1 + 1/ω) = 1/
√

τ or

ω ≈ exp

(
− 1√

τ

)
(3.7)

where we have used 1 + ω−1 ≈ ω−1 for τ → 0. ξ = ω−1/2 is the correlation length of the best
Gaussian fit, hence an estimate for the correlation length as a function of τ

ξ ∼ exp

(
1

2
√

τ

)
(3.8)

which is the celebrated essential singularity of the correlation length in the vicinity of the
Kosterlitz–Thouless transition. For general u we obtain ω = exp(−√

2u/τ).

4. Renormalized perturbation theory

We have also studied the model Hamiltonian (2.5) within a simple (renormalized) perturbation
expansion. Using the formalism presented in [9–11], we have calculated the two-point vertex
function .2(p), which is the reciprocal Fourier transform of the Green function 〈φ(x)φ(y)〉, to
lowest order in the coupling constant u. Details of the derivation can be found in the appendix.
The vertex function displays a highly unconventional large-scale behaviour if compared to
usual critical field theory. The resulting effective couplings are in fact finite in the limit τ → 0
and fixed cutoff. Since an instability shows up as a mere artefact of the expansion, we have
to introduce a (finite) shift of the mass τ → τ + u �τ , where we treat u �τ

∫
d2x (∇φ)2/2

along with the interaction term as a perturbation. For fixed spatial dimension d = 2, fixed
cutoff momentum - = 1, a sharp delta function λ → 0 and up to O(u2), the two-point vertex
function reads (see appendix)

.2(p) = Aeff
(
p4 + τeff p2

)
(4.1)
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with the effective couplings

τeff = τ + u �τ − 2u

(log(1 + 1/τ))2 (4.2)

Aeff = 1 +
2u

log(1 + 1/τ)
. (4.3)

As a consequence of the δ(∇φ)-term and in contrast to ordinary field theories, the log-terms
show up in the denominator and, consequently, the effective couplings remain finite in the
critical limit τ → 0. However, at a particular τ , provided �τ = 0, the effective mass becomes
negative, signalling the breakdown of the naive perturbation theory. Even worse, the correction
to the mass, divided by τ itself, tends to infinity in the limit τ → 0. To absorb this divergence,
we renormalize the mass by setting

�τ = 2

(log(1 + 1/τ))2 . (4.4)

Now, the effective mass reads τeff = τ and the deviation from the critical point is τ0 =
τ + u �τ ≈ u �τ for small τ . We arrive at

τ0 = 2u

(log(1 + 1/τeff))
2 (4.5)

or τeff ∼ exp
(−√

2u/τ0
)

in agreement with the variational calculation.

5. Conclusions

We have proposed an alternative model for the high-temperature phase of the two-dimensional
Coulomb gas. It describes the fluctuations of the internal electrical potential with the help of a
measure term, which favours potentials corresponding to configurations of only a few charges.
The range of validity of this model apparently extends down to the critical point—the model
yields the correct singular behaviour of the correlation length while approaching the Kosterlitz–
Thouless point from above, as shown within a simple (renormalized) perturbation expansion.
In addition, a Gaussian variational approximation scheme turned out to be successful, in
contrast to the sine–Gordon theory [12], where an analogous Gaussian variational ansatz fails
and yields a wrong singularity for the correlation length [13].

Several questions could not be addressed, for example how to extract the singular behaviour
of the free energy or the universal critical superfluid density. In our opinion, the model deserves
further investigations—thanks to its fascinating and unconventional properties.
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Appendix. Calculation of the two-point vertex function

For fixed spatial dimension d = 2, λ → 0 and up to O(u2), the two-point correlation function
reads

〈φ(x)φ(y)〉 = 〈φ(x)φ(y)〉0 +
u

4

∫
d2z (〈φ(x)φ(y)〉0〈2 �τ(∇φ(z))2
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+(∇2φ(z))2 δ(∇φ(z))〉0 − 〈φ(x)φ(y)(2 �τ(∇φ(z))2

+(∇2φ(z))2 δ(∇φ(z)))〉0) + O(u2) (A.1)

where 〈· · ·〉0 denotes the (Gaussian) average with respect to the quadratic part H0 =
(1/2)

∫
d2x ((∇2φ)2 + τ(∇φ)2) of the Hamiltonian (2.5). As explained in the main text,

we have introduced a mass shift τ → τ +u �τ and treat u �τ
∫

d2x (∇φ)2/2 as a counterterm
(additional perturbation). The bare Green function reads

G0(p) =
∫

d2x 〈φ(x)φ(0)〉0 exp (−ip · x) = 1

p2(p2 + τ)
. (A.2)

The counterterm adds

Gc(p) = −u �τ G0(p)2p2 = −u �τ
1

p2(p2 + τ)2
. (A.3)

More involved are the contributions from the measure. We define the Gaussian variables
φ1 ≡ φ(x), φ2 ≡ φ(y), ρ ≡ ∇2φ(z), E ≡ ∇φ(z) and the five-component vector
M ≡ (φ1, φ2, ρ, E), and write down the distribution of M with the help of a Gaussian
transformation [11]

P(M) = 1

(2π)5

∫
d5M̃ exp

(
−1

2

5∑
i,j=1

Cij M̃iM̃j + iM̃ · M

)
(A.4)

where Cij = 〈MiMj 〉0 denotes the correlation matrix. Explicitly, we have (we drop the
subscript 0 from now on)

(∗) ≡ 〈φ(x)φ(y)(∇2φ(z))2 δ (∇φ(z))〉
= 1

(2π)5

∫
dφ̃1 dφ̃2 dρ̃ d2Ẽ dφ1 dφ2 dρ d2E

× exp
(− 1

2

((
φ̃2

1 + φ̃2
2

)〈φ2〉 + ρ̃2〈(∇2φ)2〉 + Ẽ2〈(∇φ)2〉/2

+2φ̃1φ̃2〈φ(x)φ(y)〉 + 2ρ̃φ̃1〈φ(x)∇2φ(z)〉 + 2ρ̃φ̃2〈φ(y)∇2φ(z)〉
+2Ẽφ̃1 · 〈φ(x)∇φ(z)〉 + 2Ẽφ̃2 · 〈φ(y)∇φ(z)〉)
+i
(
φ̃1φ1 + φ̃2φ2 + ρ̃ρ + Ẽ · E

))
φ1φ2ρ

2δ(E) (A.5)

where the correlations 〈∇2φ(z)∇φ(z)〉 vanish by symmetry. Next, we perform the trivial E

integration and the Ẽ integration and obtain

(∗) = 1

(2π)3 π〈(∇φ)2〉
∫

dφ̃1 dφ̃2 dρ̃ dφ1 dφ2 dρ

× exp

(
− 1

2

((
φ̃2

1 + φ̃2
2

)〈φ2〉 + ρ̃2〈(∇2φ)2〉

+2φ̃1φ̃2〈φ(x)φ(y)〉 + 2ρ̃φ̃1〈φ(x)∇2φ(z)〉 + 2ρ̃φ̃2〈φ(y)∇2φ(z)〉
− 2

〈(∇φ)2〉
(
φ̃1〈φ(x)∇φ(z)〉 + φ̃2〈φ(y)∇φ(z)〉)2

)

+i
(
φ̃1φ1 + φ̃2φ2 + ρ̃ρ

))
φ1φ2ρ

2. (A.6)

The variables φ1, φ2, ρ are still Gaussian variables, with, however, modified correlations which
can be found from (A.6). Therefore, using Wick’s theorem

(∗) = 2

π〈(∇φ)2〉 〈φ(x)∇2φ(z)〉〈φ(y)∇2φ(z)〉

+
〈(∇2φ)2〉
π〈(∇φ)2〉

(
〈φ(x)φ(y)〉 − 2〈φ(x)∇φ(z)〉 · 〈φ(y)∇φ(z)〉

〈(∇φ)2〉
)

. (A.7)
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One of these terms is cancelled by (see chapter 3)

〈φ(x)φ(y)〉〈(∇2φ)2δ(∇φ)〉 = 〈φ(x)φ(y)〉 〈(∇2φ)2〉
π〈(∇φ)2〉 (A.8)

yielding the following contribution of the measure term:

G1(p) = − u

2π〈(∇φ)2〉
(

1

(p2 + τ)2
− 〈(∇2φ)2〉

〈(∇φ)2〉p2(p2 + τ)2

)
. (A.9)

The vertex function reads

.2(p) = (G0 + Gc + G1)
−1

= p2(p2 + τ) + u �τ p2 +
u

2π〈(∇φ)2〉
(

p4 − 〈(∇2φ)2〉
〈(∇φ)2〉 p2

)
+ O(u2)

≡ Aeff
(
p4 + τeff p2

)
(A.10)

with the effective coupling constants (up to order O(u2) and cutoff momentum - = 1)

Aeff = 1 + u

/(
1

2π

∫
|p|<-

d2p
1

p2 + τ

)
= 1 +

2u

log(1 + 1/τ)
(A.11)

and

τeff = τ + u �τ − τu

2π〈(∇φ)2〉 − u〈(∇2φ)2〉
2π〈(∇φ)2〉2

= τ + u �τ − 2u

(log(1 + 1/τ))2 . (A.12)
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